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Abstract

Female genital mutilation (FGM), also known as female genital cutting or female circumci-
sion, is one of the deeply rooted traditional practices, in which the external female genital
organ is either partially or totally removed for non-medical reasons. In Ethiopia, FGM is
widespread across the majority of regions and ethnic groups, having the highest national
prevalence that leads them to various complications such as immediate urinary and genital
tract infection, pain and hemorrhage, complications in childbirth and social, psychologi-
cal and sexual complications. This study aimed to model and investigate the potential risk
factors of time-to-circumcision of girls in Ethiopia using parametric shared frailty models
where regional states of the girls were used as a clustering effect in the models. The data
source for the analysis was the 2016 EDHS data collected from January 18, 2016 up to
June 27, 2016 from which the survival information of 2930 girls on age at circumcision
obtained. The gamma and inverse Gaussian shared frailty distributions with Exponential,
Weibull and log-logistic baseline models was employed to analyze risk factors associated
with age at circumcision using socio-economic and demographic factors. All the fitted
models were compared by using AIC and BIC values from simulation study and actual
dataset. The result revealed that about 22.4% of girls were circumcised and 77.6% were
not circumcised. The median age at circumcision was 3 years. Based on AIC and BIC val-
ues from simulation experiment and graphical evidences, log-logistic model with inverse
Gaussian shared frailty distribution preferred when compared with other models for age at
circumcision dataset. The clustering effect was significant for modeling the determinants of
time-to-circumcision of girls dataset. Based on the result of log-logistic inverse Gaussian
shared frailty model, mothers and fathers educational level, place of residence and religion
of parents were found to be the most significant determinants of age at circumcision of
girls. The estimated acceleration factor for the group of mothers who had secondary and
higher educational level were highly prolonged age at circumcision of girls by the factor of
¢ =3.119 and ¢ = 3.933 respectively. The log-logistic model with inverse Gaussian shared
frailty distribution described age at circumcision of girls better than other models and there
was heterogeneity between the regions on age at circumcision. Improving parents access to
education would be an important way approach for preventing girls’ circumcision.
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Abbreviations

FMG  Female genital mutilation

PH Proportional hazard

AFT Accelerated failure time

KM Kaplan—-Meier

AlIC Akaike information criterion

BIC Bayesian information criterion

CSA  Central Statistical Agency

EDHS Ethiopia Demographic and Health Survey

1 Background

Female Genital Mutilation (FGM), also known as female genital cutting or female circum-
cision, is one of the deeply rooted traditional practices, in which the external female genital
organ is either partially or totally removed for non-medical reasons (WHO 2008a). It is
estimated that world-wide between 100 and 140 million women are thought to have under-
gone FGM and 3 million girls annually are thought to be at risk (WHO 2008b). The prac-
tice is primarily performed in Africa where more than 28 countries and more than 3 million
girls are at risk of experiencing FGM (UNFPA 2013; Population Reference Bureau 2010).
In East Africa; Somalia (98%), Djibouti (93%), Eritrea (89%) and Ethiopia (74%) have
the highest FGM prevalence (WHO 2008c¢). In Ethiopia, FGM is widespread across the
majority of regions and ethnic groups, having the highest national prevalence (Macfarlane
and Dorkenoo 2014. The national estimated prevalence of FGM among girls and women
(age 1549 years) is 79.9%(Central Statistical Authority and ORC Macro 2001) and 74.3%
(Central Statistical Agency Ethiopia and ORC Macro 2006), respectively. The prevalence
is estimated to be highest in Afar (91.6%), Somali (97.3%) regions and Dire Dawa city
adminstration (92.3%) (Central Statistical Agency Ethiopia and ORC Macro 2006). FGM
is carried out on girls at different ages ranging from babies and toddlers to teenagers. It
is frequently carried out in unsterile conditions by traditional practitioners. This is both
the result of its traditional form and its unlawfulness in many places. Complications can
include immediate urinary and genital tract infection, pain and hemorrhage, complications
in childbirth and social, psychological and sexual complications (UNFPA 2013). The pub-
lic health burdens of FGM include both consequences for women mortality and ongoing
morbidity concerns through their life span. For the formulation of effective policy to aware
the women about the risk of FGM on women health, it is crucial to study the effect of vari-
ous socio-economic and demographic factors which affect time-to-circumcision of girls.
Having these, this study examined factors associated to time-to-circumcision of girls using
parametric survival models. Survival analysis is a statistical method for data analysis where
the response variable is the time to the occurrence of an event, time-to-circumcision of
girls in this study. Survival data is a term used for describing data that measured in a time
to the occurrence of a given event of interest. In this study the event of interest is time-to-
circumcision of girls. One of the major objectives of this analysis was to model and assess
major risk factors responsible for female genital mutilation. Kaplan and Meier have got one
important development in non-parametric methods (Kaplan and Meier 1958). The non-
parametric methods work well for homogeneous samples; they do not determine whether
certain variables are related to the survival times (Klein and Moeschberger 1997). The Cox
PH model has the restriction that proportional hazards assumption holds with time-fixed
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covariates; and it may not be appropriate in many situations and other modifications such
as stratified Cox model or Cox model with time-dependent variables are required (Collett
2003). The Study subjects (circumcised girls) in this study, taken from clustered commu-
nity and hence clustered circumcised girls survival data may be correlated at the regional
level. In this study, Shared Frailty Models were explored assuming that circumcised girls
within the same cluster (region) share similar risk factors. Frailty model is common to all
individuals in the cluster and responsible for creating dependence between event times
(Sastry 1997). The study used Parametric Accelerated Failure time (AFT) models (Expo-
nential, Weibull and log-logistic) with gamma and inverse Gaussian shared frailty distribu-
tions in determining the factors which affect the time-to-circumcision of girls.

2 Methods
2.1 Data source

The data for this study was extracted from the published reports of Ethiopian Demographic
and Health Survey (EDHS, 2016) which is obtained from Central Statistical Agency (CSA)
(Central Statistical Agency 2016). It is the fourth survey conducted in Ethiopia as a part
of the worldwide DHS project. The 2016 EDHS was designed to provide estimates for
the health and demographic variables of interest for the following domains. Ethiopia as a
whole; urban and rural areas (each as a separate domain); and 11 geographic administra-
tive regions (9 regions and 2 city administrations), namely: Tigray, Affar, Amhara, Oromia,
Somali, Benishangul-Gumuz, South Nations Nationalities and Peoples (SNNP), Gambela
and Harari regional states and two city administrations, Addis Ababa and Dire Dawa. The
principal objective of the 2016 EDHS was to provide current and reliable data on fertil-
ity and family planning behavior, child mortality, adult and maternal mortality, children’s
nutritional status, use of maternal and child health services, knowledge of HIV/AIDS, and
prevalence of HIV/AIDS and anemia.

2.2 Study population and variables

The total number of sample 15,684 girls below the age of 16 were identified in the house-
holds of selected clusters (regions). There were cases in which information on the relevant
variables was missing and these cases were excluded from the analysis. Thus, the analysis
presented in this study on the risk factors of female circumcision was based on the 2930
girls aged less than 16 years old. The response variable in this study is time-to-circumci-
sion of girls which is measured in years. It is measured as the length of time from birth to
age at which the girl has been circumcised. At any point in time, the data include obser-
vations in one of the following three categories: (1) those events (FGM) have occurred,
(2) those events (FGM) which have not yet occurred but is likely to occur in the future,
and (3) those events (FGM) could not occur and may never occur. The events that belongs
to second and third categories were taken as right censored events. Risk factors of FGM
from birth to the age or period at which girls were exposed to cutting (in years), follow-
ing reporting by the girl’s mother in the EDHS surveys in which regional state of the girls
has been considered as a clustering effect in all models with shared frailty distributions
were analyzed. Thus, this study attempts to include socio-economic, demographic and
environment related factors that are assumed as a potential determinants of FGM adopted
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from literature reviews and their theoretical justification. Possible explanatory variables
for FGM includes mother education, religion, household socio-economic status, residence,
exposure to media, employment status, and the father’s education.

2.3 Survival data analysis

Survival analysis is a collection of statistical procedures for data analysis for which the
outcome variable of interest is the time until an event occurs. By time, we mean years,
months, weeks, or days from the beginning of follow-up of an individual until an event
occurs; alternatively, time can refer to the age of an individual when an event occurs. By
event, we mean death, disease incidence, relapse from remission, recovery (e.g., return to
work) or any designated experience of interest that may happen to an individual. The use
of survival analysis, as opposed to the use of other statistical method, is most important
when some subjects are lost to follow up or when the period of observation is finite certain
patients may not experience the event of interest over the study period. In this latter case
one cannot have complete information for such individuals. These incomplete observations
are referred to as being censored. Most survival analyses consider a key analytical problem
of censoring. In essence, censoring occurs when we have some information about individ-
ual survival time, but we do not know the survival time exactly (Aalen et al. 2008).

2.3.1 Survival function

The survival function is defined to be the probability that the survival time of a ran-
domly selected subject is greater than or equal to some specified time. Thus, it gives the
probability that an individual surviving beyond a specified time. Let 7 be a continuous
random variable associated with the survival times, ¢ be the specified value of the ran-
dom variable T and f(¢) be the underlying probability density function of the survival
time 7. The cumulative distribution function F(#), which represents the probability that
a subject selected at random will have a survival time less than some stated value ¢, is
given by Cox (1972);

FO=PT <1 = fot f@)du, where; t >0, the survivor function S(¢), is given by;

S@)=P(T >t =1-F(), where; t>0, the relationship between f{¢) and S(?) is
given by;

—dpp=2La-sey="2
f = 2F@®) = —(1=S@) = =5 20

That is, the survival function gives the probability of surviving or being event free beyond
time ¢. Because S(¢) is a probability, it is positive and ranges from O to 1. It is defined
as S(0) = 1 that is, at the start of the study, since no one has experienced the event yet,
the probability of surviving past time O is one and as ¢ approaches positive infinity, S(7)
approaches O that is, theoretically, if the study period increased without limit, eventually
nobody would survive, so the survivor curve must eventually converge to zero.

2.3.2 Hazard function
The hazard function A(?) gives the instantaneous potential for failing at time ¢, given the

individual has survived up to time ¢. This is the conditional probability of experiencing
the event of interest within a very small time interval of size At having survived up to
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time ¢. It is a measure of the probability of failure during a very small interval, assuming
that the individual has survived at the beginning of the interval. In addition, it is not a
probability as it does not lie between 0 and 1. The hazard function, 4(¢) > O is given as
Cox (1972);

t<T<t+Atlt>t
W0 = Jim p(r < _A:r |t >1)
=00

By applying the theory of conditional probability, the hazard function can be expressed in
terms of the underlying probability density function and the survivor function becomes:
f@© _ —d

h(t) = % = EZHS(I)

The corresponding cumulative hazard function, H(?), is defined as:
t
H(t) = / h(u)du = —InS(t), then; S(t)=exp(—H()) and [f(t) = h(®)S(t)
0

The survival function is most useful for comparing the survival progress of two or more
groups while the hazard function gives a more useful description of the risk of failure at
any time point.

2.3.3 The Kaplan-Meier estimator of survival function

The Kaplan—Meier (KM) estimator is the standard non parametric estimator of the sur-
vival function, S(t), proposed by Kaplan and Meier (1958) which is not based on the actual
observed event and censoring times, but rather on the ordered in which events occur. It is
also called the Product-Limit estimator. KM estimator incorporates information from all of
the observations available, both censored and uncensored, by considering any point in time
as a series of steps defined by the observed survival and censored times. When there is no
censoring, the estimator is simply the sample proportion of observations with event times
greater than ¢. The technique becomes a little more complicated but still manageable when
censored times are included. Let ordered survival times are given by 0 < ¢1 <2 <tj < o0
then;

. 1, if t<1
S0 = 4l .
Hj:gsr [1_,7;]’ if r2t

where d; is the observed number of events at time 7; and r; is the number of individuals
at risk at time 7. The Kaplan—-Meier estimator, S@t)is a step function which jumps at the
observed event tlmes The size of the jump at a certain event time #; depends on the number
of events observed at #;, as well as on the pattern of the censored event times before #;.

2.4 Accelerated failure time models

Although parametric models are generally applicable to analyze survival data, there are
relatively few probability distributions for the survival time that can be used with these
models. In these situations, the accelerated failure time model (AFT) is an alternative to
the PH model for the analysis of survival time data. Under AFT models we measure the
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direct effect of the explanatory variables on the survival time instead of hazard. This char-
acteristic allows for an easier interpretation of the results because the parameters meas-
ure the effect of the correspondent covariate on the mean survival time. The members of
the AFT model considered in this study are the Exponential AFT, Weibull AFT and log-
logistic AFT models. The AFT models are named for the distribution of 7 rather than the
distribution of log(T).

2.4.1 Weibull accelerated failure time model

The Weibull distribution (including the exponential distribution as a special case when the
shape parameter is equal to one) can be parameterized as an AFT model, and they are the
only family of distributions to have this property. The results of Weibull model can there-
fore be interpreted in either framework (Klein and Moeschberger 2003). Then the Weibull
distribution is very flexible model for time-to-event data. It has a hazard rate which is
monotone increasing, decreasing, or constant. The AFT representation of the survival and
hazard function of the Weibull model is given by:

Se,(t) = exp<—exp<w>> = exp<—exp<_(%a/x)ti>>

— —
hi(t) = ltclr_lexp<—ﬂ (xx)
c c

2.4.2 Log-logistic accelerated failure time model

The log-logistic distribution has a fairly flexible functional form, it is one of the paramet-
ric survival time models in which the hazard rate may be either decreasing, increasing, or
hump-shaped, that is it initially increases and then decreases. In cases where one comes
across to censored data, using log-logistic distribution is mathematically more advanta-
geous than other distributions. According to the study of Gupta and Kundu (1999), the
log-logistic distribution proved to be suitable in analyzing survival data conducted by
Cox (1972), Cox and Oakes (1984), Bennett (1983) and O’Quigley and Stare (2002). The
cumulative distribution function can be written in closed form is particularly useful for
analysis of survival data with censoring (Bennett 1983). The log-logistic distribution is
very similar in shape to the Log-normal distribution, but is more suitable for use in the
analysis of survival data. The log-logistic model has two parameters A and p, where A is the
scale parameter and p is the shape parameter. Its probability density function is given by

O’Quigley and Stare (2002);
Aptp!
foy=
(1 + Aptr)

The corresponding survival and hazard functions are given by;

AptP~1

S@) =
® 1+ A

, and h() =

1
14+ A

where AeR, p > 0, when p < 1, the hazard rate decreases monotonically and when p > 1,
it increases from zero to its maximum point and then decreases to zero. Suppose that the
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survival times have log-logistic distribution with parameter A and p, under the AFT model,
the hazard function for the ith individual is:

pexp((Mtexp(—a'x;))

hy(t/x) = hy(texp(—a'x)exp(—a'x;) = 1+ exp(A) {texp(—a'x;) )

The log-logistic AFT model with a covariate x is given by;Y = log(T) = u + ax; + o¢,

where; o' = (a;, ay, a3, ..., ap); € has standard logistic distribution. The survival and haz-
ard with covariate x is given as follows:
1 1
S t = =
(/) 14+ dexp(f’x)t* 1+ exp(logh + f'x)
pt*~ dexp(a’x) pt*~ dexp(a’x)
hz(t/x) = =

14 dexp(a’x)t? 1+ exp(logh + a’x)

To interpret the factor exp(f’x) for log-logistic model, one can notice that the odds of sur-

vival beyond time ¢ for log-logistic model is given by: lsg(’()f)
T

We can see that the log-logistic distribution has the proportional odds property. So this
model is also a proportional odds model, in which the odds of an individual surviving
beyond time ¢ are expressed as:

—ST(I) = ex| (—a’x)—SO(t)
-5, P 1— 8y(0)

The factor exp(—a’x) is an estimate of how much the baseline odds of survival at any time
changes when individual has covariate x. And exp(a’x) is the relative odds of experiencing
the event for an individual with covariate x relative to an individual with the baseline char-
acteristics. As this representation of log-logistic regression is as accelerated failure time
model with a log-logistic baseline survival function, then the log-logistic model is the only
parametric model with both a proportional odds and an accelerated failure-time represen-
tation. If 7; has a log-logistic distribution, then ¢; has a logistic distribution. The survival
function of log-logistic distribution is given by Collett (2003):

1

%O = e

Then, the AFT representation of log-logistic survival function is given by:

, -1
Sp(t) = [1 +tlexp<¥>]

And the associated hazard function for the ith individual is given by;

—1 —y —ao -1
h(t) = 1 [1 + taexp<ﬂ—“)]
ot c

If the plot of log[%] against log(?) is linear,the log-logistic distribution is appropriate for
the given data set.
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2.4.3 Parameter estimation

Parameters of AFT models can be estimated by maximum likelihood method. The likeli-
hood of n observed survival times, ¢, t,, 5, ... , t,, the likelihood function for right censored
data is given by:

La, p,0) = Hj’?:lﬁ'([i)&" * S(t)'

where f(z;) the density function of the ith individual at time 7; , S;(#,) is the survival func-
tion of the ith individual at time #;, ¢, is indicator variable. The logarithm of the above equa-
tion yields;

n
log(a, u,0) = Z = {—¢,log(ot; + 6;logfi(x;) + (1 — 6,)logS; (W)}
=1
where W; = {logt; - ';"'Jra”ix”i }, Z = {z;} is vector of covariates for the jth subject.
The maximum likelihood parameters estimates are found by using Newton—Raphson
procedure.

pHtayix

2.5 Shared frailty model

The frailty approach is a statistical modeling concept which aims to account for heteroge-
neity, caused by unmeasured covariates. In statistical terms, a frailty model is a random
effect model for time-to-event data, where the random effect (the frailty) has a multiplica-
tive effect on the baseline hazard function (Wienke et al. 2003). Vaupel et al. (1979) used
the frailty approach to derive the individual hazard function based on the population hazard
function obtained from life tables.

The shared frailty approach assumes that all failure times in a cluster are condition-
ally independent given the frailties. The value of the frailty term is constant over time and
common to all individuals in the cluster, and thus it is responsible for creating dependence
between event times in a cluster. This dependence is always positive in shared frailty mod-
els. Conditional on the random effect, called the frailty denoted by u; , the survival times
in cluster i (1 <i < n)are assumed to be independent and the proportional hazard frailty
model assumes:

it/ x5, u;) = ho(Dexp(B'x;; + u;)
where i indicates the ith cluster and j indicates the jth individual for the ith cluster, h(.) is
the baseline hazard function, ; the random term of all the subjects in cluster i, X;i the vec-
tor of covariates for subject j in cluster i, and § the vector of regression coefficients. If the
proportional hazards assumption does not hold, the accelerated failure time frailty model
which assumes:

Rt/ x5, w;) = ho(exp(B'x;; + u)exp(B'x; + u;)
If the number of subjects n; is 1 for all groups, the univariate frailty model is obtained
(Wienke et al. 2010); otherwise the model is called the shared frailty model because all

subjects in the same cluster share the same frailty value (Hougaard 2012; Duchateau and
Janssen 2008). Let us assume Z = exp(y;) and assume Z has the gamma or the inverse
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Gaussian distribution, so that the hazard function depends upon this frailty that acts mul-
tiplicatively on it. Shared frailty models are very important in analyzing multivariate or
clustered survival data. Shared frailty model assumes that all individuals in a subgroup or
pair share the same frailty Z,(i = 1,2, ...,n), and because of this it is called shared frailty
model, but frailty from group to group may differ. Shared frailty model is similar to the
individual frailty model except the only difference is that frailty is now shared among the
n; observations in the ith group. Proportional hazard shared frailty model and accelerated
failure time shared frailty model assumes:-

h(r) = Z,-ho(t)exp(ﬁ’xij), and k(1) = Ziho(t)exp(ﬁ'x,-j)(Zi(ﬁ’xijt)) respectively.

2.5.1 Gamma shared frailty distribution

The gamma distribution has been widely applied as a mixture distribution by Greenwood
and Yule (1920) and Hougaard (2012). From a computational point of view, it fits very
well into survival models, because it is easy to derive the formulas for any number of
events. The gamma frailty distribution has been widely used in parametric modeling of
intra-cluster dependency because of its simple interpretation, flexibility and mathematical
tractability (Vaupel et al. 1979; Clayton and Cuzick 1985). To make the model identifiable,
we restrict that expectation of the frailty equals one and variance be finite, so that only one
parameter needs to be estimated. Thus, the distribution of frailty Z is the one parameter
gamma distribution. Under the restriction, the corresponding density function and Laplace
transformation of gamma distribution is given by Gutierrez (2002):

1.2 Zi(g)il <—Zi) 0>0
(2) = ——exp| — ).0>
TIOME

where I'(.) is the gamma function, it corresponds to a Gamma distribution Gam(u, ) with
p fixed to 1 for identifiability and its variance is 8. The associated Laplace transform is:

L) = (1 ¥ g)_e,e >0

Note that if 8 > 0, there is heterogeneity. So the large values of 8 reflect a greater degree
of heterogeneity among groups and a stronger association within groups. The conditional
survival and hazard function of the gamma frailty distribution is given by Gutierrez (2002):

Sp®) =1[1- Hln(S(t))]_%, and  hy(t) = k(O[] — 0ln(S(t))] ™!

where S(f) and A(?) are the survival and the hazard functions of the baseline distributions.
For the Gamma distribution, the Kendall’s Tau (Hougaard 2012), which measures the asso-
ciation between any two event times from the same cluster in the multivariate case. It is an
overall measure of dependence and independent of transformations on the time scale and
the frailty model used. The associations within group members are measured by Kendall’s,
which is given by:

0
0.1
a12°0D

T =
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2.5.2 Inverse Gaussian shared frailty distribution

Similar to the gamma frailty model, simple closed-form expressions exist for the uncon-
ditional survival and hazard functions, this makes the model attractive. The probability
density function of an inverse Gaussian shared distributed random variable with parameter
0 > Ois given by:

! 2
1 \2,3 —-(Z -1
7)) = <—) Z. _— ], s
12(Z) 50 g exp< 207, 60>0,z>0

1

For identifiability, we assume Z has expected value equal to one and variance 6. The
Laplace transformation of the inverse Gaussian distribution is:-

1= (1 +205):

],6>0,s>0
0

L(s) = exp l

For the inverse Gaussian frailty distribution the conditional survival function is given by
Gutierrez (2002):

S,(1) = exp{%(l - 201n{5([)}]%>} 0> 0

For the inverse Gaussian frailty distribution the conditional hazard function is given by
Gutierrez (2002):

hy(®) = h(D[1 — 201n{S(t)}]%1,0 >0

where S(f) and A(¢) are the survival and the hazard functions of the baseline distributions.
With multivariate data, an Inverse Gaussian distributed frailty yields a Kendall’s Tau given
by:

1

T———l+
T2 0

,&P2/0) [T exp(-1)
92 2/6 u

,  where 7¢(0,1/2).

2.5.3 Parameter estimation
Under assumptions of non-informative right -censoring and of independence between the

censoring time and the survival time random variables, given the covariate information, the
marginal log-likelihood of the observed data is given by Gutierrez (2002):
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s

marg(\P AB 0 Z X) H l(H(hO@U)exp(Xgﬁ))5y>X
Jj=1

i=1

/ zd'exp( ZHo(y,,)eXP(XTﬂ))f(Z)dz]

H K (ho(y,,)exp(XTﬁ»%)X( DAL

2 0<yy>exp<XTﬁ>)]

J=1

/\
=

Taking the logarithm, the marginal likelihood is:

barg (¥, B, 0:Z, X) = { lz 5;(log(hy(y) + X ﬂ)]
j=1

+log [(—D””'L"( [Z Hoy(y)exp(X] ,;)] )] }
j=1

where d; = Z o 6!} is the number of events in the ith cluster, and L@(.) is the gth deriva-

tive of the Laplace transform of the frailty distribution defined as:
L(s) = Elexp(—Zs)] = / exp(—Z2;8)f (Z,)dz;, s > 0
0

where W represents a vector of parameters of the baseline hazard function, § the vector
of regression coefficients and 6 the variance of the random effect. Estimates of ¥, g, 6
are obtained by maximizing the marginal log-likelihood of the above; this can be done
if one is able to compute higher order derivatives L@(.) of the Laplace transform up to
q =max{d,,...,d}.

2.5.4 Model selection

For comparing models that are not nested, the Akaike’s information criterion (AIC) and
Bayesian information criterion (BIC) are used which are respectively defined as:

AIC = =2log(L)+2(k+c+1) and BIC = -2log(L) + log(nk)

where k is the number of covariates,n is sample size and ¢ the number of model specific
distributional parameters. This study used the AIC and BIC to compare various candidates
of non- nested parametric models. The preferred model is the one with the lowest values of
the AIC and BIC (Wit et al. 2012).
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2.6 Model diagnosis
2.6.1 Checking the adequacy of parametric baselines

The graphical methods can be used to check if a parametric distribution fits the observed
data. Model with the Weibull baseline has a property that the log(—log(5(¢))) is linear with
the log of time, where S(f) = exp(—At”). Hence, log(—log(S(t))) = log(A) + plog(t). This
property allows a graphical evaluation of the appropriateness of a Weibull model by plot-
ting loq(—log(S‘(T))) versus log(t) where S'(I) is Kaplan—Meier survival estimate (Datwyler
and Stucki 2011). The log-failure odd versus log time of the log-logistic model is linear.
Where the failure odds of log-logistic survival model can be computed as:
At?
1—s() _ l+4ar

sty 1

1+Atr

=AM

Therefore, the log-failure odds is given by: log( ! S(Sgt)) = log(At?) = log(A) + plog(t). There-

fore, the appropriateness of model with the log- loglstlc baseline can graphically be evalu-
ated by plotting log( S(” ) versus log(time) where S() is Kaplan—Meier survival estimate
(Datwyler and Stuckl 201 1). If the plot is straight line, log-logistic distribution will fit the
given dataset well. If the plot S() agamst t is linear, the Exponential distribution will be

appropriate for the given data set
2.6.2 Using residual plots

For the parametric regression problem, analogs of the semi parametric residual plots can
be made with a redefinition of the various residuals to incorporate the parametric form
of the baseline hazard rates (Klein and Moeschberger 2003). The first such residual is the
Cox—Snell residual that provides a check of the overall fit of the model. The Cox—Snell

residual, r T, is defined by:

= H (T;1X))
where H is the cumulative hazard function of the fitted model. If the model fits the data,
then the r;’s should have a standard (4 = 1) exponential distribution, so that a hazard plot

of rj VErsus the Nelson-Aalen estimator of the cumulative hazard of the T ’s should be a
stralght line with slope 1.

3 Results
3.1 Summary statistics

A total of 2930 girls were included in the study from nine regional states and two city
administrations. The time interval between the girls’ date of birth and the time circumci-
sion took place was an interest of this study. Of all 2930 girls considered 655 (22.4%) were
circumcised and the rest of 2275 (77.6%) did not experience circumcision between the age
of 1 year and 15 years. The median age at circumcision was 3 years while the minimum
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and maximum observed event time was 1 year and 15 years, respectively. Furthermore,
among 23.7% girls were circumcised in the 1 year age,which indicates that circumcision of
girls in Ethiopia takes palace at the early ages of the daughters. From Table 1, out of 2930
girls’ mothers, 2312 (78.9%) lives in rural while 618 (21.1%) of them were residing in
urban. About 1999 (68.2%) of the girls’ mothers had no work and 931 (31.8%) had a work.
The proportion of mothers who have access to media was 2063 (70.4%) while 867 (29.6%)
of mothers had no access to media. Majority of the girls’ mothers 1375 (46.9%) were in the
ages of 25-34, while 1105 (37.7%) and 450 (15.4%) were in the ages of 35-49 and 15-24
respectively.

Out of 2930 total number of mothers of the girls, 1466 (50.0%) were Christian, 1441
(49.2%) Muslim, and 23 (0.8%) of them were from other religious group. About 1376
(47.0%) of the mothers wealth indexes were classified as poor while 435 (14.8%) had
medium income and 1119 (38.2%) were rich. The study revealed that educational attain-
ments of girls’ mothers; about 1901 (64.9%) had no education while 739 (25.2%) had pri-
mary education and the remaining 290 (9.9%)had attended secondary and higher educa-
tion. From the total number of fathers who were included in the study, 1509 (51.5%) of
them were illiterate (no education), 903 (30.8%) of the fathers had attended primary educa-
tion and the remaining 518 (17.7%) were secondary and higher education level. The bar
chart of Fig. 1 reveals that circumcision (event) of girls in Ethiopia is highly prevalent in
Afar region followed by Amahara and Somali regions compared to the other regions in the
country.

Plots of the KM curves to the survival and hazard experience of time- to- circumci-
sion of girl is shown in Fig. 2, the survival plot decreases throughout the given time. This
implies that the more girls approach to the age 15, they are more likely to get circumcised.

The survival plots for time-to-circumcision of girls by place of residence, mothers’
age,wealth index and religion are shown in Fig. 3. The plot indicates that the risk that the
girls being circumcised is similar for those girls whose mothers lived either in rural or
urban at birth. However, the difference becomes visible at the middle till the end of the
curves. From the middle point to the end of the curves, the survival plot of circumcision
of girls whose mothers lived in rural is below that of girls whose mothers lived in urban.
This implied that the risk that the girls whose mothers lived rural being circumcised is
much higher than those girls whom their mothers are from urban. The plot also depicts
that as there is highest risks of circumcision for those girls whose mothers age group is
35-49 compared to those girls whose mothers age group belongs to other categories. The
plot demonstrates that girls whose mothers wealth index is poor have highest risk towards
circumcision compared to girls whose mothers are from middle and rich wealth index. The
plot also reveals that the risk of circumcision is high for those girls whose mothers are
muslim and other religion compared to those whose mothers are Christian.

The survival plot of time- to- circumcision of girls by mothers education, fathers
education,exposure to media and employment status are shown in Fig. 4. From this plot we
can observe that the risk that girls being circumcised after birth is similar for all groups at
the beginning. But the difference becomes visible at the middle of the curves. At the mid-
dle point of the curves, the survival plot of girl circumcision for those girls whose mothers
have no education is below that of those girls whose mothers are in primary,secondary and
higher education. This implied that the risk of girls circumcision for whom their mothers
have education is much higher than those girls for whom their mothers belong to primary
education and above. Also the plot shows that girls whose fathers have no education have
highest risk of circumcision compared to those whose fathers education level belong to
primary school and above. This plot suggested that the risk of girl circumcision is high
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Table 1 Descriptive summary of FMG data

Covariates Categories Status Total (%)
Censored (%) Event (%)
Residence Rural 1711 (75.2) 601 (91.8) 2312 (78.9)
Urban 564 (24.8) 54 (8.2) 618 (21.1)
Employment status No 1513 (66.5) 486 (74.2) 1999 (68.2)
Yes 762 (33.5) 169 (25.8) 931 (31.8)
Exposer to media No 1557 (68.4) 506 (77.3) 2063 (70.4)
Yes 718 (31.6) 149 (22.7) 867 (29.6)
Age of mothers 15-24 394 (17.3) 56 (8.5) 450 (15.4)
25-34 1128 (49.6) 247 (37.7) 1375 (46.9)
35-49 753 (33.1) 352 (53.7) 1105 (37.7)
Religion Christian 1228 (54.0) 238 (36.3) 1466 (50.0)
Muslim 1031 (45.3) 410 (62.6) 1441 (49.2)
Other 16 (0.7) 7(1.1) 23 (0.8)
Wealth index Poor 990 (43.5) 386 (58.9) 1376 (47.0)
Middle 342 (15.0) 93 (14.2) 435 (14.8)
Rich 943 (41.5) 176 (26.9) 1119 (38.2)
Mothers education No education 1352 (59.4) 549 (83.8) 1901 (64.9)
Primary 639 (28.1) 100 (15.3) 739 (25.2)
Secondary 177 (7.8) 4 (0.6) 181 (6.2)
Higher 107 (4.7) 2(0.3) 109 (3.7)
Fathers education No education 1030 (45.3) 479 (73.1) 1509 (51.5)
Primary 765 (33.6) 138 (21.1) 903 (30.8)
Secondary 272 (12.0) 23 (3.5) 295 (10.1)
Higher 208 (9.1) 15(2.3) 223 (7.6)
Status 2275 (77.6) 655 (22.4) 2930 (100)
Time Minimum Median Maximum
1 3 15

for those girls whose mothers are not exposed to media. Also the curves reveals that girls
whose mothers are not employed have higher risk of circumcision compared to those girls
whose mothers are employed.

3.1.1 Simulation study

In this study, survival data which accounted with five covariates with random values of §
was simulated from Weibull distribution. The main goal of doing this was to see the per-
formance of different survival data models for different parameter values. Three popular
survival baseline models, Exponential, Weibull and log-logistic models with various frailty
distributions were considered. Four binary covariates which were generated from Bernoulli
distribution with success probability of 0.4, 0.25, 0.6 and 0.37 and one covariate from uni-
form distribution between the values of 1.5 and 4.5 were included. Random values for the
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Fig.2 The K-M plots of survival Survival plot of FMG
and hazard functions of FMG
after marriage
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Fig.3 Survival of time-to-circumcision of girls by place of residence, mothers age, wealth index and reli-
gion
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Survival plot of FMG by mothers education Survival plot of FMG by employment status
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Fig.4 Survival of time-to-circumcision of girls by mothers education, fathers education, exposure to media
and employment status

parameters of covariates and ancillary parameters for the time to event distribution and
time to censoring distribution in the simulations were considered. List of vectors indicat-
ing the effect of the corresponding covariate (f) = (—0.423,0.250, —1.702, 1.038, 0.902),
ancillary parameter for the time to event distribution (f,) = 0.5, f, parameter for the time
to event distribution = 0.268, ancillary parameter for the time to censoring distribution
(B1) = 0.5 and f, parameter for the time to censoring distribution = 1.368 were consid-
ered. The trial was repeated for 20 times for sample size of 1000 with maximum time of
follow-up 1825 days (5 years). In this study we were interested to explore how the available
frailty distributions in the survival data models behave with different sets of parameters.
AIC statistic was considered to compare the efficiency of each models. Figure 5 shows that
log-logistic with inverse Gaussian shared frailty has superior performance than the others
survival models, that is, Exponential and Weibull models.

As we can see from Fig. 5 of simulation experiment, the AIC and BIC values for all
models (Exponential, Weibull and log-logistic) with no shared frailties are high compared
to those models with gamma and inverse Gaussian shared frailty distributions. The AIC
and BIC values of log-logistic gamma and inverse Gaussian shared frailty model are sub-
stantially small compared with Exponential and Weibull models with shared frailties which
depicts the appropriateness of log-logistic inverse Gaussian model for survival data with
shared frailty distribution (Fig. 6).
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Fig.5 AIC and BIC statistics of the three models when diferent shared frailties are considered (survival
data simulated from Weibull distribution)

3.2 Accelerated failure time model results
3.2.1 Univariate analysis

This study used univariate analysis in order to see the effects of each covariate on time-to-
circumcision of girls before proceeding to the multivariate analysis. The univariate analy-
ses was fitted for every covariate by AFT models using different baseline distributions i.e.,
exponential, weibull and log-logistic. In all univariate analysis of baseline AFT models,
age of mothers, place of residence, religion of mothers and education level of both moth-
ers and fathers were significantly associated with girls circumcision while access to media,
employment status and wealth index were not significant at 5% level of significance. Based
on the univariate analysis, except those insignificant covariates, all explanatory variables
are candidate predictors for further analysis.

3.3 Multivariate AFT analysis
The summary of multivariate analysis is given in Tables 2 and 3 and model comparisons

were presented in Table 4 and Fig. 5. Accordingly, they suggested that log-logistic inverse
Gaussian shared frailty AFT model with a minimum 3456.258 AIC value appears to be
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Table 4 Summary of AIC and BIC values for different survival AFT models with different shared frailties

Information Models Frailty distributions
criterions
No frailty Gamma shared frailty Inverse Gaussian
shared frailty
AIC Exponential 3646.219 3527.396 3526.225
Weibull 3619.913 3503.102 3501.976
Log-logistic 3590.611 3471.312 3456.258
BIC Exponential 3741.943 3620.103 3627.932
Weibull 3721.620 3610.792 3609.666
Log-logistic 3692.318 3579.001 3563.948
o 3750
3650+ ™ '
A
A
3600 - 37007
. .
o 0 Models
<« 33907 @0 3650~ ® Exponential
A weibull
* L ® N Loglogistic
[ ]
A A
35001 & A
3600
] [ |
| | |
345[' i I I 1 I I
No Gamma Inverse Gaussian No Gamma Inverse Gaussian
Shared frailty Shared frailty

Fig.6 AIC and BIC statistics of the three models when different shared frailties are considered (survival
data obtained from time-to-circumcision dataset)

appropriate model compared with other models. This indicates it is more efficient model
to describe determinant factors of time-to-circumcision of girls. The frailty in this model is
assumed to follow a inverse gaussian distribution with mean 1 and variance equal to theta
(0). The heterogeneity in the population of the region which is used as a clusters are esti-
mated by the selected model is & = 9.708 and the dependence within the clusters (region) is
measured by Kendall’s tau is = = 0.473. A variance of zero (6 = 0) would indicate that the
frailty component does not contribute to the model. A likelihood ratio test for the hypothesis
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6 = 0 is shown at the bottom of Table 3 and indicates a chi-square y? value of 136.35 with
one degree of freedom resulted a highly significant p value of 0.000. This implied that the
frailty component had significant contribution to the model. The estimate of shape param-
eter in the log-logistic inverse Gaussian shared frailty model is y = 4.399. This value shows
the shape of hazard function is unimodal because the value is greater than unity i.e., it
increases up to some time and then decreases. In this model all categorical variables were
significant except wealth index, exposure to media and employment status. From Table 3
the confidence intervals of the acceleration factor for all significant categorical covariates do
not include one at 5% level of significance. This shows that they were significant factors for
determining the survival time-to-circumcision of gitls in Ethiopia. However, from the vari-
able of religion category, for those mothers who were following others religion, it was not
significant when using Christian as the reference category with (p value = 0.115, ¢ = 0.516,
95% CI = [0.226, 1.175]). Also, those mothers with primary education was insignificant
by using no education as a reference category with (p value = 0.069, ¢ = 1.199, 95% CI =
[0.985, 1.458]). From the categories of fathers education, higher education was not signifi-
cant when no education was used as reference category with (p value = 0.139, ¢ = 1.357,
95% CI = [0.905, 2.036]). The estimated coefficient of the parameter for girls mothers who
were residing in urban was 0.421. ”The sign of the coefficient was positive which implies
increase in log of survival time and hence, elongated expected duration of time-to-circumci-
sion of girls whose mothers had lived in urban areas. The 95% confidence interval for accel-
eration factor of mothers educational levels was [0.985, 1.458], [1.716, 5.670] and [1.784,
8.669] for the group of primary, secondary and higher education’s respectively. These con-
fidence interval do not include one for secondary and higher education level. Indicating sec-
ondary and higher education were significantly relevant factors for the age at circumcision
of girls by using uneducated mothers as a reference category. Accordingly, the age at cir-
cumcision of girls prolonged by a factor of (¢ = 3.119 and ¢ = 3.933) for secondary and
higher education respectively at 5% level of significance. Religion of mothers was statisti-
cally determining age at circumcision of girls. The time rate and 95% confidence interval of
acceleration factors for religious group of mothers for the category of muslim was 0.654,
[0.546, 0.782] when compared to the category of Christian religion as reference. The esti-
mated coefficient of the parameters for girls whom their mothers were following muslim
was — 0.424. The sign of the coefficient is negative which implies that decreasing log of sur-
vival time and hence, shorter expected duration of age at circumcision of girls. The time rate
and 95% confidence interval for acceleration factor of girls fathers with education category
of primary and secondary was 1.321, [1.097, 1.591] and 1.465, [1.046, 2.051] respectively
by using uneducated fathers as a reference categories.

3.4 Model diagnostics
3.4.1 Checking model adequacy of parametric baselines using graphical methods

After the model has been fitted, it is desirable to determine whether a fitted parametric
model adequately describes the data or not. Therefore, the appropriateness of model with
Exponential baseline can be graphically evaluated by plotting cumulative hazard func-
tion versus time, the Weibull baseline by plotting log-cumulative hazard function versus
log(time) and log-logistic baseline by plotting log-failure odd versus log(time). If the plot is
linear, the given baseline distribution is appropriate for the given dataset. Accordingly, the
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Fig.7 Diagnosis plots of exponential, Weibull and log-logistic models

models plots are given in Fig. 7 and the plot for the log-logistic baseline distribution make
a bit straight line better than Exponential and Weibull baseline distributions. This evidence
also strengthens the decision made by AIC and BIC values of simulation experiment and
actual dataset, that log-logistic baseline distribution is an appropriate for the given dataset.

3.4.2 Cox-Snell residuals plots

The Cox—Snell residuals are one way to investigate how well the model fits the data. The
plots for fitted models of residuals for Exponential,Weibull and log-logistic to our data via
maximum likelihood estimation with cumulative hazard functions are given in Fig. 7. If the
model fits the data, the plot of cumulative hazard function of residuals against Cox—Snell
residuals should be approximately a straight line with slope 1. The plot makes straight lines
through the origin for log-logistic with inverse Gaussian share frailty distribution suggest-
ing that it is appropriate for time-to-circumcision of girls dataset.

4 Discussion

The main goal of the study was modeling the determinants of age at circumcision of girls
in Ethiopia using AFT parametric shared frailty models by considering three baseline dis-
tributions: Exponential, Weibull and log-logistic distributions and the frailty distributions:
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Gamma share frailty and inverse Gaussian shared frailty. In this study, region was used as
a clustering (frailty) effect on modeling the determinants of time-to-circumcision of girls in
Ethiopian using 2016 EDHS data, in which the comparison of models was performed using
AIC criteria where the model with minimum AIC value was accepted to be the best model
for the given data set. From simulation study and actual dataset,we have found a small AIC
value for log-logistic inverse Gaussian shared frailty model than its counter Exponential
and Weibull models. Accordingly, log-logistic inverse Gaussian shared frailty model was
selected as a best model. The clustering effect were also significant (p value < 0.000) in
log-logistic inverse Gaussian shared frailty model. This showed that there is heterogeneity
between regions by assuming girls within the same region share similar risk factors towards
circumcision. That is, the correlation within regions cannot be ignored and clustering effect
was important in modeling the hazard function. In this study the adequacy of baseline dis-
tributions and distributions with shared frailty were checked by using graphs in Fig. 5. From
the plot of baseline Exponential, Weibull and log-logistic distributions; the plot of baseline
log-logistic was more straight line compared with Exponential and Weibull for age at cir-
cumcision dataset. The Cox—snell plot of log-logistic inverse Gaussian shared frailty showed
straight line through the origin with approximately slope 1. Suggesting that the model is
appropriate for time-to-circumcision of girls dataset. These findings were consistent with
Cox (1972), O’Quigley and Stare (2002) and Bennett (1983) for log-logistic model. The
results of this study suggested that place of residences was significant predictive factor for
age at circumcision of girls in Ethiopia. This shows that girls whose mothers lived in urban
areas had longer survival with respect to age at circumcision than girls whose mothers
resided in rural areas. It showed that age at circumcision for girls whose mothers lived in
urban was prolonged by the factor of ¢ = 1.524 when rural is used as reference. A similar
study that has been conducted in Ethiopia by Setegn et al. (2016) revealed as the rural girls
were more vulnerable towards circumcision than urban girls. The findings of this study also
exposed that the educational level of girls mothers had a significant effect on the survival
of age at circumcision with 5% level of significance and it prolonged age at circumcision
by the factor of ¢ = 3.119 and 3.933 for secondary and higher education respectively when
illiterate mothers was used as the reference category. The result of the study shows that girls
whose mothers had secondary and higher education were more survived than those unedu-
cated and primary education. This is consistent with the study conducted in Burkina Faso
by Karmaker et al. (2011) they revealed that the prevalence of girls circumcision is high for
those daughters whom their mothers are illiterate. Mothers religion was found to be one of
the significant factors for determining age at circumcision in this study. It showed that age
at circumcision for those girls whom their mothers religion were muslim was shortened by
the factor of ¢ = 0.654 when mothers with Christian religion is used as reference. Similar
study conducted by Abdisa et al. (2017) found that girls whom their mothers are muslims
are more vulnerable towards circumcision. The result of this study also demonstrated that
fathers educations are determining factors for age at circumcision of girls in Ethiopia which
agrees with the study conducted in Liberia by Adetunji (2018).

5 Conclusions
This study was based on a dataset of time-to-circumcision of girls in Ethiopia which was

obtained from Central Statistics Agency with an aim of modeling the determinants of
time-to-circumcision of girls by using different parametric shared frailty models. Out of
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the total of 2930 girls, about 22.4% were experienced an event (circumcised) and 77.6%
were censored (uncircumcised) between the age of 1 and 15 years. The estimated median
age of girls at circumcision was 3 years. To model the determinants of time-to-circum-
cision of girls, various parametric AFT shared frailty models by using different baseline
distributions were employed. Among these using AIC, the log-logistic AFT inverse gauss-
ian shared frailty model is best fitted to circumcision dataset than other parametric AFT
shared frailty models. There is a frailty (clustering) effect on age at circumcision of girls
dataset that arises due to differences in distribution of time-to-circumcision of girls among
regions of Ethiopia. Goodness of the fit of baseline distributions and distribution with
shared frailty was checked by means of graphical method and Cox—Snell residuals plots
in Fig. 5 and revealed that baseline log-logistic and log-logistic inverse gaussian shared
frailty model were better fitted the age at circumcision of girls dataset compared to other
models. The result of log-logistic inverse gaussian shared frailty model showed that the
factors that determine the timing of age at circumcision are place of residence, religion
of mothers, mothers educational level and fathers educational level of the respondents are
statistically significant. As educational level of mothers and fathers of girls increases, age
at circumcision of girls in Ethiopia highly prolonged. This indicates that parents of the girls
have to be given an opportunity of getting access to adult education to get awareness about
harmfulness of circumcision of girls. Place of residence and religion of mothers prolong
and shorten age at circumcision of girls respectively. Awareness has to be given on risk of
girls circumcision specially for the society residing in rural area. The education can plays
a crucial role in this regard. Since parent education is the most determinant factor of age at
circumcision, parents of the girls have to be given special attention in giving them educa-
tion opportunity and aware them on the complications that FGM would bring after circum-
cising girls. Further cross-sectional studies should be conducted in each region of Ethiopia
and identify other factors of age at circumcision of girls that are not identified in this study.
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